If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2+5=19
We move all terms to the left:
z2+5-(19)=0
We add all the numbers together, and all the variables
z^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $
| 7(9c+6)=20.5+9.2c | | 32÷c=8 | | .4(2x-3)+7x=18 | | Y=0.3x+6.9 | | 4^x*2^x=64 | | (4^x)^x=256 | | 10y−4= 16 | | 94+p=122 | | -15x-3=11x+231 | | 93+p=122 | | 91+p=122 | | 13x-10=8x+200 | | 88+p=122 | | 86+p=122 | | 22y×12=154 | | x/1.4=-5 | | x+0.02(100)=0.08(100+x) | | -x-1=9x+149 | | 4x-15=-2x-27 | | (b+10)=(b-10) | | 4x-13=-2x-5 | | 4x÷3x=15 | | a=25-25/2 | | 3X-4+x/6=10-X/3 | | 731=17q | | 13x-5=2x+145 | | O.2x=46 | | 6x+12=x-33 | | 3n-2=37 | | 0=p-1 | | 0.5x/0.3=30 | | 18-2*x=11 |