If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2+13z+36=0
We add all the numbers together, and all the variables
z^2+13z+36=0
a = 1; b = 13; c = +36;
Δ = b2-4ac
Δ = 132-4·1·36
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-5}{2*1}=\frac{-18}{2} =-9 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+5}{2*1}=\frac{-8}{2} =-4 $
| a+26/9=5 | | x+x+x+x+100=180 | | (a)^2+(5)^2=(13)^2 | | 1-(-7x)-x=x-2(x-7) | | 4+10c=8 | | 20=2n+10 | | -8q+-12=20 | | (x-2)+4x=(x+2)+5 | | 9=4/q | | 16^a-3=32^3a+2 | | 6m=6=-3 | | 92-5x=-9x+100 | | 70-0.2x=0 | | 13*x=5,2 | | x^2+24x+68=180 | | f/2+35=43 | | 7x-5=8(3+x) | | 13xx=5,2 | | 2(b+66)=4 | | 77+31+x=180 | | 5/4=4c=1/4 | | -18+9x-5x=-26+6x | | -1=4y+3 | | 4x=14-13 | | 66=2k-(-22) | | 9(q+–7)=27 | | -f+2+4f=8-#f | | 3x+⅔=-8+2x | | (x^2+2)·(x−2)=0 | | -1x+41=8x+62 | | –16b+11b+4b=13 | | 125x+3=15 |