If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z(z-13)=0
We multiply parentheses
z^2-13z=0
a = 1; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·1·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*1}=\frac{0}{2} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*1}=\frac{26}{2} =13 $
| 34^13-88/x=408 | | -2i+14+8=10-8 | | x−2/8−2x=16 | | 4x-2=2(5+x) | | x−28−2x=16 | | 14t-11=4t+16 | | (2x-3)5=1 | | 3+13+10n=-8-3 | | 2/7x÷3/5=1/2 | | -15+4a=-16 | | 7(x+11)=0 | | –8x–85=-12x+11 | | )–8x–85=-12x+11 | | J(5)=-8x+48 | | 3−n=−3 | | 3d/15=21 | | 4x-5(2x+¹)+16=0 | | 1 x+8=101 x+9 | | 139+72+x=180 | | j+10=2(j-5) | | m/12-7=3 | | q/4-8=-15 | | 8-5/6z=-17 | | y-6+12=21 | | 11w-27=28 | | 18-7v=-31 | | 8=12u-28 | | 7(-20+x)+-5(x+-22)=2x+-30 | | 3(2b–1)-7=6b–10 | | 2x+4=5x-8=19 | | 3x-1=3x+4x-4 | | 5x-18=(3x-6+2x+12) |