If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z(z+5)=5
We move all terms to the left:
z(z+5)-(5)=0
We multiply parentheses
z^2+5z-5=0
a = 1; b = 5; c = -5;
Δ = b2-4ac
Δ = 52-4·1·(-5)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{5}}{2*1}=\frac{-5-3\sqrt{5}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{5}}{2*1}=\frac{-5+3\sqrt{5}}{2} $
| x+8x=792 | | X+4+7x-6=180 | | 2a-6=19 | | 3y^2+y=5y-1 | | 7x-6+x+4=180 | | 3*4*2k=24 | | 8-3k=0 | | 8x+2=-3+5x+11 | | 4f(-2-11)=0 | | 8x+1+67=180 | | 3n^2=7n-5 | | 8x²-33x+4=0 | | Y+8x=792 | | 3/x=5+(4+3)*5/5*(56-8) | | -18=2x^2+15x | | 7p2-7p=7p. | | 6x-4x=45 | | (8x-9)=56x-63 | | X+8-y=700 | | 2(x-4)+7(-20)=4x | | a2-81=(a+)(a-) | | X+y+8=700 | | 6b+9=2b+7 | | X-y=700 | | 10*{1,5+1,3x)=3x+25 | | 5x-120=10x+35 | | 20y=–12 | | 5x-120=10x+34 | | b-11=-12 | | 1/3x131/3=5/12 | | 10x+25=15x+25 | | 12m2+7m=12 |