If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z(3z+1)=14
We move all terms to the left:
z(3z+1)-(14)=0
We multiply parentheses
3z^2+z-14=0
a = 3; b = 1; c = -14;
Δ = b2-4ac
Δ = 12-4·3·(-14)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-13}{2*3}=\frac{-14}{6} =-2+1/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+13}{2*3}=\frac{12}{6} =2 $
| O.80x+30.00=2.30x+30.00 | | 4-3d=1 | | 4x+56.2=128.2 | | 0.41/18.45=v | | 0.80x+30=2.30x+30 | | 20x+4=24x | | g(g-6)=27 | | 5x+20-20-40=180 | | 0,25(4x-3)=3x | | -32h=-256 | | 10t=5=20 | | 5(x−2)=25 | | 43-d=8 | | 6c+12=-5c+4+9c | | x2-9=-13 | | −7(y+10)−11=−88 | | 4-+21=7x-12 | | x=14+40 | | 3^(2x-6)=81 | | 36k^2-121=0 | | 19/24=5/6t+-1/4 | | (7/y)^2+y^2=50 | | 6–3x=24 | | (n-7)(3n+4)=0 | | 3(2x+5)=2x+15+4x | | -534=c-574 | | 6=2w=16 | | t^2-(t^2/4)=0 | | x−(9x−10)+11=12x+3(−2x+13) | | 7.6/3.4=x | | 6+3x=2x+12 +2 | | X*x=x² |