If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y=24+3(-84/13)
We move all terms to the left:
y-(24+3(-84/13))=0
We multiply all the terms by the denominator
y*13))-(24+3(-84=0
Wy multiply elements
13y^2-84=0
a = 13; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·13·(-84)
Δ = 4368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4368}=\sqrt{16*273}=\sqrt{16}*\sqrt{273}=4\sqrt{273}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{273}}{2*13}=\frac{0-4\sqrt{273}}{26} =-\frac{4\sqrt{273}}{26} =-\frac{2\sqrt{273}}{13} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{273}}{2*13}=\frac{0+4\sqrt{273}}{26} =\frac{4\sqrt{273}}{26} =\frac{2\sqrt{273}}{13} $
| (2n+21)+(5n+40)=180 | | (2n+21)+()5n+40)=180 | | 4p+p+20+12p-7=180 | | 7y–1=2(y+3)–2 | | x+4(24+3x)=12 | | y=(5)2^5 | | 18.x+4.x=56 | | 1=6x+8 | | 5z+10=38 | | 3/5=10/q | | -2x+1/4=-3/8 | | -7(y+1)=-9y-11 | | v+3=89 | | (40-19)/(21/7)=x | | -5w+3(w+8)=8 | | 2x+6•2=2x | | (40-19)/21/7=x | | 3x-52=8. | | 7+7=(7n-9) | | 3/20+w+3/20+w=w | | -x-4-2=0 | | 5x+2=273x= | | n+33=61 | | -2(4h+7)=(4h+3)-3(4h+9) | | 4x=-x10 | | y=212(-1.05)^6 | | 3=-6=+x | | 7x-3(6x+5)=18 | | 84=r=6 | | x+9-3x=31 | | (3x-10)=2(2x+17) | | y=25000(-1.05)^6 |