y=(x+(1-5i))(x+(1+5i))(x+1)

Simple and best practice solution for y=(x+(1-5i))(x+(1+5i))(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y=(x+(1-5i))(x+(1+5i))(x+1) equation:


Simplifying
y = (x + (1 + -5i))(x + (1 + 5i))(x + 1)

Remove parenthesis around (1 + -5i)
y = (x + 1 + -5i)(x + (1 + 5i))(x + 1)

Reorder the terms:
y = (1 + -5i + x)(x + (1 + 5i))(x + 1)

Remove parenthesis around (1 + 5i)
y = (1 + -5i + x)(x + 1 + 5i)(x + 1)

Reorder the terms:
y = (1 + -5i + x)(1 + 5i + x)(x + 1)

Reorder the terms:
y = (1 + -5i + x)(1 + 5i + x)(1 + x)

Multiply (1 + -5i + x) * (1 + 5i + x)
y = (1(1 + 5i + x) + -5i * (1 + 5i + x) + x(1 + 5i + x))(1 + x)
y = ((1 * 1 + 5i * 1 + x * 1) + -5i * (1 + 5i + x) + x(1 + 5i + x))(1 + x)
y = ((1 + 5i + 1x) + -5i * (1 + 5i + x) + x(1 + 5i + x))(1 + x)
y = (1 + 5i + 1x + (1 * -5i + 5i * -5i + x * -5i) + x(1 + 5i + x))(1 + x)

Reorder the terms:
y = (1 + 5i + 1x + (-5i + -5ix + -25i2) + x(1 + 5i + x))(1 + x)
y = (1 + 5i + 1x + (-5i + -5ix + -25i2) + x(1 + 5i + x))(1 + x)
y = (1 + 5i + 1x + -5i + -5ix + -25i2 + (1 * x + 5i * x + x * x))(1 + x)

Reorder the terms:
y = (1 + 5i + 1x + -5i + -5ix + -25i2 + (5ix + 1x + x2))(1 + x)
y = (1 + 5i + 1x + -5i + -5ix + -25i2 + (5ix + 1x + x2))(1 + x)

Reorder the terms:
y = (1 + 5i + -5i + -5ix + 5ix + -25i2 + 1x + 1x + x2)(1 + x)

Combine like terms: 5i + -5i = 0
y = (1 + 0 + -5ix + 5ix + -25i2 + 1x + 1x + x2)(1 + x)
y = (1 + -5ix + 5ix + -25i2 + 1x + 1x + x2)(1 + x)

Combine like terms: -5ix + 5ix = 0
y = (1 + 0 + -25i2 + 1x + 1x + x2)(1 + x)
y = (1 + -25i2 + 1x + 1x + x2)(1 + x)

Combine like terms: 1x + 1x = 2x
y = (1 + -25i2 + 2x + x2)(1 + x)

Multiply (1 + -25i2 + 2x + x2) * (1 + x)
y = (1(1 + x) + -25i2 * (1 + x) + 2x * (1 + x) + x2(1 + x))
y = ((1 * 1 + x * 1) + -25i2 * (1 + x) + 2x * (1 + x) + x2(1 + x))
y = ((1 + 1x) + -25i2 * (1 + x) + 2x * (1 + x) + x2(1 + x))
y = (1 + 1x + (1 * -25i2 + x * -25i2) + 2x * (1 + x) + x2(1 + x))
y = (1 + 1x + (-25i2 + -25i2x) + 2x * (1 + x) + x2(1 + x))
y = (1 + 1x + -25i2 + -25i2x + (1 * 2x + x * 2x) + x2(1 + x))
y = (1 + 1x + -25i2 + -25i2x + (2x + 2x2) + x2(1 + x))
y = (1 + 1x + -25i2 + -25i2x + 2x + 2x2 + (1 * x2 + x * x2))
y = (1 + 1x + -25i2 + -25i2x + 2x + 2x2 + (1x2 + x3))

Reorder the terms:
y = (1 + -25i2 + -25i2x + 1x + 2x + 2x2 + 1x2 + x3)

Combine like terms: 1x + 2x = 3x
y = (1 + -25i2 + -25i2x + 3x + 2x2 + 1x2 + x3)

Combine like terms: 2x2 + 1x2 = 3x2
y = (1 + -25i2 + -25i2x + 3x + 3x2 + x3)

Solving
y = 1 + -25i2 + -25i2x + 3x + 3x2 + x3

Solving for variable 'y'.

Move all terms containing y to the left, all other terms to the right.

Simplifying
y = 1 + -25i2 + -25i2x + 3x + 3x2 + x3

See similar equations:

| 3(x+5)+2(x-4)=42 | | (-a)xy(z+d)=ashit | | 3y-2x-7=0 | | x^2+x-2=o | | 6m+2=27 | | 3x+1y=120 | | -3n=45 | | -3=-3v+6(v+4) | | 4b-3-10b-9= | | (-a)xy(z+d)= | | y+3x=67 | | -5=5(x-3)-7x | | 3x+1y=67 | | 3(x+5)-12=13+2 | | y=(x+(1-5i))(x+(1+5i)) | | -7u+2(u+7)=19 | | 10x+2=2(6x-1) | | 3x-8y=25 | | 7x-11y=24 | | F(6a)=2x^2-3x-5 | | 5sin(2x-10)+3=0 | | Ln(x+7)+ln(x-7)=ln(15) | | -u-3u+11u-14u=14 | | 10x+2=2(2x-1) | | 2y-y=16 | | 3r-2r-r+4r-3r=7 | | 3x+y=-24 | | 3q+-15q+17q=-5 | | Come=4p+d | | 4y^2+3y=4 | | y=6(6)+3 | | h(x)=x^4 |

Equations solver categories