y2=9/12

Simple and best practice solution for y2=9/12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y2=9/12 equation:



y2=9/12
We move all terms to the left:
y2-(9/12)=0
We add all the numbers together, and all the variables
y2-(+9/12)=0
We add all the numbers together, and all the variables
y^2-(+9/12)=0
We get rid of parentheses
y^2-9/12=0
We multiply all the terms by the denominator
y^2*12-9=0
Wy multiply elements
12y^2-9=0
a = 12; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·12·(-9)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*12}=\frac{0-12\sqrt{3}}{24} =-\frac{12\sqrt{3}}{24} =-\frac{\sqrt{3}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*12}=\frac{0+12\sqrt{3}}{24} =\frac{12\sqrt{3}}{24} =\frac{\sqrt{3}}{2} $

See similar equations:

| (2y+4)^2+3=0 | | (3/5)1=8x | | 4y^2+16y=-19 | | 11x-20=8x+9 | | 7x+2/8+2x-9/2=7 | | 0,75x=0,5x+0,3 | | 2640k=11 | | 0,75x=0,5+0,3 | | 7x/4=x+6 | | (2x+2)/4-1=10 | | f(×)=4×-9 | | 7(k)-9=3(k)+7 | | 4(1.5y-5.5)+20=6y-2 | | 4(1.5y+5.5)=6y-2 | | 4(-5.5+1.5y)+20=6y-2 | | -7n+8=-6n-15 | | 3/4(z)-3=12 | | 3x+24=40+x | | 4-5x+7x+100=180 | | 2x+7=×+12 | | 13-34y=4(12y-7) | | 18^(x+5)=7^5x | | 6(x+2)=2+6x | | 10+20+10=30x | | -m^2+2=0 | | -6x-3x+12=3 | | a-18=21 | | 6x-8x+2=6 | | 2x+11=78 | | 6(x=2)=5(x+7) | | 3n-(6n-9)=8-3n+1 | | 4y-48=17y-(6y-8) |

Equations solver categories