If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=84
We move all terms to the left:
y2-(84)=0
We add all the numbers together, and all the variables
y^2-84=0
a = 1; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·1·(-84)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*1}=\frac{0-4\sqrt{21}}{2} =-\frac{4\sqrt{21}}{2} =-2\sqrt{21} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*1}=\frac{0+4\sqrt{21}}{2} =\frac{4\sqrt{21}}{2} =2\sqrt{21} $
| a^2-12a+47=0 | | (1.55x+1)+(0.95x-3)+x=138 | | 3/4x+1/2=10 | | 4y+26=2(y+4) | | 82(4b+5)=14 | | 4y-13=4y+1 | | 2(3x-5)=3x+6 | | C-4=7.c=11 | | 3x=6x+14 | | 3x+10=12-x | | 2x/5-4=3x/4-8 | | 1/2(x)-99=0 | | 5y-1=51 | | 1/2x-99=0 | | 4x+(6x-10/2)=6 | | 13+4k=29 | | 3d-2=8 | | 12x-5x=19 | | 5x-2=4+19 | | 5e+5=7 | | X-50=23.56x | | 1.3n-26-0.35n=0 | | 1.3n-13-0.35n=0 | | 4a/5=25 | | -17x+6=12x^2 | | 3x2+12x6=9+12x+8 | | 6b=1/2 | | 4x+15+3x+2=30 | | 7x+2x+4=85 | | 7(y-5)=y+10-4y | | 0.5(12-r)=r | | 5.2=0.6z |