y2=32

Simple and best practice solution for y2=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y2=32 equation:



y2=32
We move all terms to the left:
y2-(32)=0
We add all the numbers together, and all the variables
y^2-32=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $

See similar equations:

| 8x+1=21x+5=180 | | 5x+4x=3x-14 | | |3n-8|=16 | | 18j=54 | | 16-12x=-54 | | z+45+z+74+78+55=360 | | 12y=21+9y | | 18y+13y=31y | | w/12=24 | | (z+450+z+74+78+55=360 | | 5y2+2y-2=0 | | -35=x-4x+1-(x+1)-2x-(x-1) | | 3-2×(x+3)=x-18 | | 20+8x=-8(-4x+4)+4 | | 4/z=1/5 | | m−7-9=5 | | x-4x+10(x+1)-2x-(x-1)=-35 | | x/12-15=41 | | 4=(3x+7)5=(9x-43) | | √2x^2-121=x | | 3x•x-585x+1500=0 | | 1.6y=100 | | 4x-8+7x+1=180 | | 8=u+-12 | | 6+5n=3n+8 | | 5w+2=–5w+8w+10 | | 32=g/8 | | d+-1=-4 | | 4)8x+10-4x=18 | | 3)2x+20-x=60 | | Y^(7x)=0 | | 3x+9+4x+x=9x |

Equations solver categories