If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2-49=0
We add all the numbers together, and all the variables
y^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $
| Y+x^2-1=0 | | 2^x-3=61 | | 25,5m+2=17,5m-8+8m+10 | | 4a+2=2a+4 | | 6.4=0.8c | | 4x-25=1/2(3x-5+2x) | | `13x=15x-14 | | (k+7)^2=289 | | 7x+16=-65 | | 7^x=70 | | 2(5y=16+7y) | | -2f6=4–(3f–2) | | (5x-17)=(9x-19)=(3x+3) | | j÷3=4 | | -(-2)²+3x-1-x=2x-5 | | 3(2x+5)+1=22 | | -10r=-3r-7 | | -10r=-3r−7 | | 4w+1=3w+17 | | 8-8q=-6q-8-49 | | 200=2(5^3x) | | 8t+1=6+9t | | 10y=-13+9y | | 36x^2-9x-105=0 | | 2x−3=4x+4 | | -5t−2=2−6t | | -12d-18=4-16-14d | | m/5+3=7 | | 10+9b=-8+3b | | -12d-18=4-16−14d | | -h=-2h+2 | | 12.51+14.8z+4.14=-0.31+11.6z |