If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2-20y+84=0
We add all the numbers together, and all the variables
y^2-20y+84=0
a = 1; b = -20; c = +84;
Δ = b2-4ac
Δ = -202-4·1·84
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8}{2*1}=\frac{12}{2} =6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8}{2*1}=\frac{28}{2} =14 $
| 8y-2y=36 | | k/3=39 | | 6/6c-21=5/7 | | 4x2-52+120=0 | | 5x-(-x+2)=-6+4(-6x-2) | | 13x+7=8x+22 | | -6x-4=-11x+1 | | -m+m=-7 | | L=40-10i | | 4+2b=8(10-9b) | | 4+2b=8(10-9b | | I=40-10i | | 30+2y=60 | | 3(n+7)=-36 | | 8(x-6)-8(x+8)=4-(x-4) | | 10+2x=6+3× | | 6(-9x+3)=21-54x | | 1/3x+11=10 | | 1/3x11=1 | | 5x-6=164 | | 5=7(10b+9)+2 | | 2x-30=4x-90 | | 14=13x-2(-3x+11) | | -20=-4x+28 | | g^2+7g=36 | | -(s-4)+7=-(9+s) | | 4+b=6b-5(b+7) | | 3(4n)=24 | | -2/5=x-6 | | 5x+2=3x+20x= | | p+25=69 | | 2u+5=3+1u |