If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2-16+64=81
We move all terms to the left:
y2-16+64-(81)=0
We add all the numbers together, and all the variables
y^2-33=0
a = 1; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·1·(-33)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*1}=\frac{0-2\sqrt{33}}{2} =-\frac{2\sqrt{33}}{2} =-\sqrt{33} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*1}=\frac{0+2\sqrt{33}}{2} =\frac{2\sqrt{33}}{2} =\sqrt{33} $
| 2x^2+4x+6=x | | (8+m)/6=4 | | 45=x-24 | | 2m^2-4m-9=m | | 50°C=x°F | | 50°C=x°F. | | (3.2y+6.4)=(-2.9y-3.4) | | (3x-12)+118+97+(2x+7)=360 | | 12-(3c+4)=3(c+4)+2 | | 9+4x=15 | | 15t=2t^2 | | 21x+3+66=90 | | 5x^2-75x+180=0 | | Y=-2/3x-9 | | 21x+3=66 | | 40+3x+10=180 | | x^2-9x-92=0 | | 21x=3+60 | | 21x+3=60 | | -10x-(-2x)=64 | | 21x+3+60=90 | | 31/2/9=x/27 | | 5x^2-20x+9x-36=0 | | 10x+24=-6 | | 49+2x=-31+7x=90 | | Y=(8+2x)(10+2x) | | m-6m=5 | | x+8=4x+3=180 | | 15(x+4)-2(1-x)-x-25=14x+45 | | 9x+0=6x+2 | | x+8+4x+3=180 | | 59048=3^x-1 |