If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2+y+-4=0
We add all the numbers together, and all the variables
y^2+y=0
a = 1; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*1}=\frac{-2}{2} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*1}=\frac{0}{2} =0 $
| 6(x+2)=−72 | | .5y+2=1 | | 1+3x=-5+ | | .25(12x-4)=-13 | | b/16=-20 | | 3x^2-15-12=0 | | 11x-11=180 | | -9=b/9 | | 1.7p+8-1.62p=0.4p-0.32+8 | | a-11=-13 | | 4=24/v | | 2.4(x+1)=9.6 | | 6=n/17 | | 6x+1.5=2x+41.5 | | 13x-x^2=13 | | x=180-65 | | 13x-x^=13 | | F(x)=-4/5x^2+48/5x-114/5 | | (2+x)-(3x+5)=-3 | | 6/12=2(3a-8) | | X^2+5x+20=180 | | 4+14+2x^2=0 | | 12r-19r=14 | | X-(-15x)+(-17x)+(-19)=(-7) | | 6f^2+8f-1=0 | | 2x-6-5x=12 | | -16x^2+12x+625=0 | | 1/4(8x20)=17 | | 8/7-(5x+2)=1/4x-12 | | n+9=3 | | -18=-17+a | | 1/4(8x+20=17 |