If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2+14=50
We move all terms to the left:
y2+14-(50)=0
We add all the numbers together, and all the variables
y^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $
| (8x+5)×(3x+5)=500 | | –b+9.2=–5.7 | | 2.6m+11=-4.9m+29 | | 2x-10+6x-10=120 | | 4(3x-1)+2=-6+7 | | 27=8x+14 | | (7t+1)°=180 | | 2x+106x-10=120 | | 3w^2+15=29 | | 5÷x=13 | | 1/2(2x-8)=1/3(6+9) | | ŷ=-1.52+-3.2x | | 6(y-2)=2(5y+7) | | 99.9s+7.99s=53.94 | | 14+3w=8w-3(w-4) | | x21=126 | | 21k^2=63 | | |8x-7|=-39 | | -8x+24=-2x+18 | | −2(−3 | | −2(−3 | | −2(−3 | | −2(−3 | | −2(−3 | | 6t-1=9t-3 | | 9.6t=10t−2 | | -4(6x-8)=-24x+32 | | -3.5-6.2y=87.4 | | 5b+20=10b+10 | | 2(3+x)=5x+54 A. 17 | | 3(2x-4=-42 | | -20=12b |