If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y-1/5y=6400
We move all terms to the left:
y-1/5y-(6400)=0
Domain of the equation: 5y!=0We multiply all the terms by the denominator
y!=0/5
y!=0
y∈R
y*5y-6400*5y-1=0
Wy multiply elements
5y^2-32000y-1=0
a = 5; b = -32000; c = -1;
Δ = b2-4ac
Δ = -320002-4·5·(-1)
Δ = 1024000020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1024000020}=\sqrt{36*28444445}=\sqrt{36}*\sqrt{28444445}=6\sqrt{28444445}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32000)-6\sqrt{28444445}}{2*5}=\frac{32000-6\sqrt{28444445}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32000)+6\sqrt{28444445}}{2*5}=\frac{32000+6\sqrt{28444445}}{10} $
| -9p=-8p-6 | | -10(s-1)=-74 | | 3x+52-52=121-52 | | -9m-7=-5m+5 | | 5+t=15-t | | 3k-5=-10+2k | | 3x+52=121 | | 3(x+4)=3x+4+8 | | 41x+759x-82=20(40x-64) | | X^2+(x+5)^2=5+16(5-x) | | 10(x-1)=8(x-5) | | 3+5x=9+6x | | a÷3+5=1= | | (4w+8)+(4w+4)+(2w+11)=360 | | -3b-7=-7b+9 | | 1/7x-11=-25 | | 6(x-7)=4(x+4) | | -7(2t-1)=-49 | | 2(2n+5)=60 | | -1+2z=-10+z | | -10x-20=-6 | | -(3y+5)=4 | | -4x=-3x-8 | | 1/3x-1/5=2/3 | | 2x−2=5x−10 | | 8t-4+9=t+7t=2 | | 11=3v-10 | | 8t-4+9=t | | 4m+8=17 | | 3(4-x)=7(x+14) | | 64÷a=8 | | 5(x+3)-2=2(x+3)+13 |