y-(4y-3y)/2y-(3+4y)=1/5

Simple and best practice solution for y-(4y-3y)/2y-(3+4y)=1/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y-(4y-3y)/2y-(3+4y)=1/5 equation:



y-(4y-3y)/2y-(3+4y)=1/5
We move all terms to the left:
y-(4y-3y)/2y-(3+4y)-(1/5)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
We add all the numbers together, and all the variables
y-(+y)/2y-(4y+3)-(+1/5)=0
We get rid of parentheses
y-(+y)/2y-4y-3-1/5=0
We calculate fractions
y-4y+(-5y)/10y+(-2y)/10y-3=0
We add all the numbers together, and all the variables
-3y+(-5y)/10y+(-2y)/10y-3=0
We multiply all the terms by the denominator
-3y*10y+(-5y)+(-2y)-3*10y=0
Wy multiply elements
-30y^2+(-5y)+(-2y)-30y=0
We get rid of parentheses
-30y^2-5y-2y-30y=0
We add all the numbers together, and all the variables
-30y^2-37y=0
a = -30; b = -37; c = 0;
Δ = b2-4ac
Δ = -372-4·(-30)·0
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1369}=37$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37)-37}{2*-30}=\frac{0}{-60} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37)+37}{2*-30}=\frac{74}{-60} =-1+7/30 $

See similar equations:

| (x+3)/(2x-3)=2 | | (2x-8)/3=0 | | 10y÷2+6=36÷2 | | (x-5)/9=6 | | 74f=6,17 | | 6v+1=49 | | 6(x-8)=4(x-7) | | 4x-6=8x | | b(5+3b-1)=60 | | 51=6c-9 | | 5x+14-6=24-6 | | (x-2)/6=7 | | x2−2(x+5)=4x+8 | | 5y+3y=0 | | 7x+3=11x-12 | | 3x/5+3=19 | | 3x+5–4x=8–5x+21 | | -(c-3=1 | | -5(2t+9)=-25 | | 37=16/7a | | 1=(-x*0.25)+(x*0.25) | | 3×2=-x2+26 | | x2+3×2=26 | | 1-2(3x-1)/5=x+8/6-4x-2/3 | | 8–4x=2–7x | | 4x^{2}-24x+35=0 | | 7x2+x2=0 | | )7x+x2=0 | | x+(x*18/100)=300 | | Y²-4y-32=0 | | 7(x-2)=-196 | | t11–8=3 |

Equations solver categories