y-(4-3y)/2y-(3+44)=1/5

Simple and best practice solution for y-(4-3y)/2y-(3+44)=1/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y-(4-3y)/2y-(3+44)=1/5 equation:



y-(4-3y)/2y-(3+44)=1/5
We move all terms to the left:
y-(4-3y)/2y-(3+44)-(1/5)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
We add all the numbers together, and all the variables
y-(-3y+4)/2y-47-(+1/5)=0
We get rid of parentheses
y-(-3y+4)/2y-47-1/5=0
We calculate fractions
y+(15y-20)/10y+(-2y)/10y-47=0
We multiply all the terms by the denominator
y*10y+(15y-20)+(-2y)-47*10y=0
Wy multiply elements
10y^2+(15y-20)+(-2y)-470y=0
We get rid of parentheses
10y^2+15y-2y-470y-20=0
We add all the numbers together, and all the variables
10y^2-457y-20=0
a = 10; b = -457; c = -20;
Δ = b2-4ac
Δ = -4572-4·10·(-20)
Δ = 209649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-457)-\sqrt{209649}}{2*10}=\frac{457-\sqrt{209649}}{20} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-457)+\sqrt{209649}}{2*10}=\frac{457+\sqrt{209649}}{20} $

See similar equations:

| 12.5+0.25x=7.5 | | n=138 | | n+n=138 | | 180=5x+36+2x+x | | 180=5x=36=2x+x | | 5/4=x/54 | | .75x=2.5x+12 | | 5(1+X)+3(1+X)/1-2x=8 | | 180=3x+52+5x+6 | | 5/3x+18-3=-12 | | 180=3x+2x+25 | | X*5x=210 | | 180=4x+8+10x+32 | | 5n+60=90 | | 180=3x+5+7x-7 | | (5x)/(8)-6=x | | -12v+2v-7v+7v—v=9 | | 34=-8x+5(x+2) | | 180=3x+5+2x | | a+2a-2a+5a=18 | | 2x-x=64 | | Q+3/4m=0 | | 11t-3t-3t=5 | | 6q^2=0 | | 20a^2=0 | | 5x+3x+10-20=60 | | 48a=0 | | 3q-2q=5 | | 48a+20^2=0 | | 4K-3k=2 | | 9p-p=8 | | 5x+3x+10-20=20 |

Equations solver categories