If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying y * y + 28y + -160 = 0 Multiply y * y y2 + 28y + -160 = 0 Reorder the terms: -160 + 28y + y2 = 0 Solving -160 + 28y + y2 = 0 Solving for variable 'y'. Begin completing the square. Move the constant term to the right: Add '160' to each side of the equation. -160 + 28y + 160 + y2 = 0 + 160 Reorder the terms: -160 + 160 + 28y + y2 = 0 + 160 Combine like terms: -160 + 160 = 0 0 + 28y + y2 = 0 + 160 28y + y2 = 0 + 160 Combine like terms: 0 + 160 = 160 28y + y2 = 160 The y term is 28y. Take half its coefficient (14). Square it (196) and add it to both sides. Add '196' to each side of the equation. 28y + 196 + y2 = 160 + 196 Reorder the terms: 196 + 28y + y2 = 160 + 196 Combine like terms: 160 + 196 = 356 196 + 28y + y2 = 356 Factor a perfect square on the left side: (y + 14)(y + 14) = 356 Calculate the square root of the right side: 18.867962264 Break this problem into two subproblems by setting (y + 14) equal to 18.867962264 and -18.867962264.Subproblem 1
y + 14 = 18.867962264 Simplifying y + 14 = 18.867962264 Reorder the terms: 14 + y = 18.867962264 Solving 14 + y = 18.867962264 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-14' to each side of the equation. 14 + -14 + y = 18.867962264 + -14 Combine like terms: 14 + -14 = 0 0 + y = 18.867962264 + -14 y = 18.867962264 + -14 Combine like terms: 18.867962264 + -14 = 4.867962264 y = 4.867962264 Simplifying y = 4.867962264Subproblem 2
y + 14 = -18.867962264 Simplifying y + 14 = -18.867962264 Reorder the terms: 14 + y = -18.867962264 Solving 14 + y = -18.867962264 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-14' to each side of the equation. 14 + -14 + y = -18.867962264 + -14 Combine like terms: 14 + -14 = 0 0 + y = -18.867962264 + -14 y = -18.867962264 + -14 Combine like terms: -18.867962264 + -14 = -32.867962264 y = -32.867962264 Simplifying y = -32.867962264Solution
The solution to the problem is based on the solutions from the subproblems. y = {4.867962264, -32.867962264}
| 8=b+a | | 11x*2-9x=0 | | 2y-8=12y+12 | | 5+2(3-1)=x-(1+2) | | y+-9=36 | | 28x-6=-34 | | p+(-3)=(-10) | | z=-8q^2 | | 60026+ 99057 + 33282 + 80729 + 97468 = | | h(t)=-t^2+6t+25 | | 180=x+3+65+25 | | r=x-h | | 0.8m-4=-0.8m | | x*2+2x-120=0 | | (6x+5)+(2x-9)=180 | | -3x+60=30 | | -3x+3=-4x+10 | | 1a-2(a+8)=6 | | 15n+16+4n=38 | | 5y+2(3y-1)=9y-(y+2) | | 5k+2.9= | | -3x-9-2x=-29 | | -20.4t=5.7t^2+36 | | 6(6x+17)=415 | | 4y=20-8y | | 3x(-5)=7x*2-16x | | 3x+4.3=8.8 | | 5x-7=93 | | =2(x-1)(x+3)(x-1+2i)(x-1-2I) | | n=m-5 | | 4p-17q+44q-18p= | | 9x^2-9x+1=0 |