If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y(y+4)+3(y-3)=10
We move all terms to the left:
y(y+4)+3(y-3)-(10)=0
We multiply parentheses
y^2+4y+3y-9-10=0
We add all the numbers together, and all the variables
y^2+7y-19=0
a = 1; b = 7; c = -19;
Δ = b2-4ac
Δ = 72-4·1·(-19)
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-5\sqrt{5}}{2*1}=\frac{-7-5\sqrt{5}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+5\sqrt{5}}{2*1}=\frac{-7+5\sqrt{5}}{2} $
| ((5/(y+11))+(y/17))=((y+5)/(y=11)) | | 7x-10=(-60)+2x | | 0.6-0.4x=0.4 | | 9*x*x=300 | | 18*x=42 | | 4p+16=-2p+10 | | -6v-+39=-9(v-4) | | 6y−3=3y+12 | | 5y-12=3y+24 | | -9=9(9-5t | | u+5.37=8.23 | | 5x-19+x=2x+7x-41 | | 180-58+35=x | | 35+58x=180 | | 4x/5+2=5x/13+5 | | 13,400=0.10x+.07(155,000-x) | | -16x2+150x+190=0 | | 4m–2=5m+7 | | 4v^2=12v+5 | | X/2-5=x-4/5 | | 3r^-10r+3=0 | | 5x/2-8=2x | | 16x^2+150x-190=0 | | 3×2x-1=15 | | 9y−7=3y+11 | | 16p+15=15 | | 12=t/3+10 | | 12x=2x-1 | | 0.009+x=1 | | 5a+5=7a–2. | | |2x-1|=3x-4 | | 2x+3x+12=34 |