If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=56x-13/3x
We move all terms to the left:
x-(56x-13/3x)=0
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x-(+56x-13/3x)=0
We get rid of parentheses
x-56x+13/3x=0
We multiply all the terms by the denominator
x*3x-56x*3x+13=0
Wy multiply elements
3x^2-168x^2+13=0
We add all the numbers together, and all the variables
-165x^2+13=0
a = -165; b = 0; c = +13;
Δ = b2-4ac
Δ = 02-4·(-165)·13
Δ = 8580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8580}=\sqrt{4*2145}=\sqrt{4}*\sqrt{2145}=2\sqrt{2145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2145}}{2*-165}=\frac{0-2\sqrt{2145}}{-330} =-\frac{2\sqrt{2145}}{-330} =-\frac{\sqrt{2145}}{-165} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2145}}{2*-165}=\frac{0+2\sqrt{2145}}{-330} =\frac{2\sqrt{2145}}{-330} =\frac{\sqrt{2145}}{-165} $
| a³=729 | | 7k^2-8k+10=0 | | a^2+8a=-6 | | a²+5a=1 | | (2s-1)=(s+1) | | 0.8x+40=8x-35 | | (x+9=180 | | 24=360x | | 5 | | 5 | | 2(x-4+2x=6+-2 | | 4(2x−5)−3x=5x−20 | | 11j+20+20=16j-20 | | 5x+2∙(3x−4)=14x+7 | | 8/x+3=9/x+4 | | -w-18w-4=1-19w | | 0=10+20t-5t^2 | | -14=-21+(c/11) | | s+3=–38 | | 7b=62 | | (y/4)-16=-14 | | 14(x+2)=6x-12+8x | | 3(x−12)=4x−36 | | 5t+8+6=8+11t | | 43=9y4y+3 | | 2(9n—1)+7(n+6)=35 | | 17f+2=5f+12f+1 | | 15=-3/4(8q-4) | | 9x-(2x+7)=5x-25 | | 4(2a-1)=-4(a-5) | | 2c=–94 | | u+9=10 |