If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=5(x+5)(6-x)
We move all terms to the left:
x-(5(x+5)(6-x))=0
We add all the numbers together, and all the variables
x-(5(x+5)(-1x+6))=0
We multiply parentheses ..
-(5(-1x^2+6x-5x+30))+x=0
We calculate terms in parentheses: -(5(-1x^2+6x-5x+30)), so:We get rid of parentheses
5(-1x^2+6x-5x+30)
We multiply parentheses
-5x^2+30x-25x+150
We add all the numbers together, and all the variables
-5x^2+5x+150
Back to the equation:
-(-5x^2+5x+150)
5x^2-5x+x-150=0
We add all the numbers together, and all the variables
5x^2-4x-150=0
a = 5; b = -4; c = -150;
Δ = b2-4ac
Δ = -42-4·5·(-150)
Δ = 3016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3016}=\sqrt{4*754}=\sqrt{4}*\sqrt{754}=2\sqrt{754}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{754}}{2*5}=\frac{4-2\sqrt{754}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{754}}{2*5}=\frac{4+2\sqrt{754}}{10} $
| y=7.5÷0.5 | | 15/(0.8x)-15/x=12 | | 7x+10=21 | | X²+x-306=0 | | 2x-79=3x-90 | | 7+4r-2=10+ | | 75+x=86 | | 2^x(x)+5x=1/64 | | x=2x+43×(x−2x)+169 | | 4^(-2x+1)=64 | | 4z+1=6z-3z= | | M=m-3 | | Y=15a+13 | | X2+28x+127=0 | | X2-28x+127=0 | | 5a+7=–2a+105 | | 6m5÷2/3m4= | | -15x-5=0 | | -x/3=x/2-4/31/6 | | 7y+8=15 | | x^-85x+1806=0 | | 0.5x0.12=x | | 10^(x+3)=6^2x | | 5-3x=8x-6 | | 5x+6-2x=3x+7 | | 2x²+16x-96=0 | | 2x+7(-7+2x)=31 | | 16+n10=24 | | 2-(3x-23)=7(x-2) | | 75d=50d+60 | | 10-4=n | | 4-(6x-24)=7(x-4) |