If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=46x-13/3x
We move all terms to the left:
x-(46x-13/3x)=0
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x-(+46x-13/3x)=0
We get rid of parentheses
x-46x+13/3x=0
We multiply all the terms by the denominator
x*3x-46x*3x+13=0
Wy multiply elements
3x^2-138x^2+13=0
We add all the numbers together, and all the variables
-135x^2+13=0
a = -135; b = 0; c = +13;
Δ = b2-4ac
Δ = 02-4·(-135)·13
Δ = 7020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7020}=\sqrt{36*195}=\sqrt{36}*\sqrt{195}=6\sqrt{195}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{195}}{2*-135}=\frac{0-6\sqrt{195}}{-270} =-\frac{6\sqrt{195}}{-270} =-\frac{\sqrt{195}}{-45} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{195}}{2*-135}=\frac{0+6\sqrt{195}}{-270} =\frac{6\sqrt{195}}{-270} =\frac{\sqrt{195}}{-45} $
| 3^x=56 | | r2-400=0 | | y/12=-73 | | 5x+12=5-x | | 9-3y=12-6 | | x/4-3x=-11 | | 5k+7=2(6k-14)+56 | | 5+x=5x-12 | | 38b=4(4b+-1)-84 | | 1/4y=3y-11 | | 3x=28-1 | | 6t+-5+5t=105 | | F(8)=6x-2 | | 9t+2=54 | | 36=28x-4.9x^2 | | Y=-2.4x+11 | | 2n=2(7) | | 5+7m=138 | | 2x-12+14x=4x+2-6x | | x/5+15=2/5(x+15) | | x=(12/21*3/7)/15 | | 10x+4x+5x/4=976 | | (x^2+16)^2-(16x+1)=0 | | 145=-5-x | | 145=-5-c | | 10x+4x+5x/4x=976 | | |2x-3|=14 | | 4x+1÷3=11 | | 2(y+2)=4(y+8) | | 4y-5=3y+3 | | r4—8r2+16=0 | | z-(-14)=8 |