If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=17/201140x
We move all terms to the left:
x-(17/201140x)=0
Domain of the equation: 201140x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x-(+17/201140x)=0
We get rid of parentheses
x-17/201140x=0
We multiply all the terms by the denominator
x*201140x-17=0
Wy multiply elements
201140x^2-17=0
a = 201140; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·201140·(-17)
Δ = 13677520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13677520}=\sqrt{16*854845}=\sqrt{16}*\sqrt{854845}=4\sqrt{854845}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{854845}}{2*201140}=\frac{0-4\sqrt{854845}}{402280} =-\frac{4\sqrt{854845}}{402280} =-\frac{\sqrt{854845}}{100570} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{854845}}{2*201140}=\frac{0+4\sqrt{854845}}{402280} =\frac{4\sqrt{854845}}{402280} =\frac{\sqrt{854845}}{100570} $
| 3440*x=2924 | | 3440*x=3000 | | 7/2x-5/2=2x-4 | | 7/2x=2x+0.5 | | (x–2)2–2x(x2–4)+(3x–6)(3x+6)= | | 12=v/4+8 | | 3=3i/2+6i | | 2x-3(13)=61 | | 1.2(12.6r-1.6)=90.9 | | 12x+4x=16 | | X=x/2+1 | | 5x+3x-8+2x+2=180 | | 6v^2-2v+6=4 | | 3v^2+3v+2=2 | | -x^2+5-3=-3 | | 7×10=12x | | -p^2+4p-7=-3 | | A=1/2d¹d² | | 0.2^x=20 | | y=-4(6)-5 | | (2x+4)+(x+6)+(7x)=180 | | (4x+2)+(x-4)+(x-4)=180 | | h/4-2=6 | | (3x-2)+(7x+6)+x=180 | | 1/4-d=3/4 | | 2x+89=-2x+65 | | 8x=9x+24 | | 3x+53=x+49 | | -7/8x×=-9/10 | | -7/8x=9/10 | | x/1=1.25 | | x*1=1.25 |