x=(x+40)(2x-22)

Simple and best practice solution for x=(x+40)(2x-22) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(x+40)(2x-22) equation:



x=(x+40)(2x-22)
We move all terms to the left:
x-((x+40)(2x-22))=0
We multiply parentheses ..
-((+2x^2-22x+80x-880))+x=0
We calculate terms in parentheses: -((+2x^2-22x+80x-880)), so:
(+2x^2-22x+80x-880)
We get rid of parentheses
2x^2-22x+80x-880
We add all the numbers together, and all the variables
2x^2+58x-880
Back to the equation:
-(2x^2+58x-880)
We add all the numbers together, and all the variables
x-(2x^2+58x-880)=0
We get rid of parentheses
-2x^2+x-58x+880=0
We add all the numbers together, and all the variables
-2x^2-57x+880=0
a = -2; b = -57; c = +880;
Δ = b2-4ac
Δ = -572-4·(-2)·880
Δ = 10289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-57)-\sqrt{10289}}{2*-2}=\frac{57-\sqrt{10289}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-57)+\sqrt{10289}}{2*-2}=\frac{57+\sqrt{10289}}{-4} $

See similar equations:

| (2x+30)(9x–15)=0 | | -2(x-4)-12=6x+8 | | 221=151-v | | 2x+21+4x+16=115 | | 10/9=q/3 | | y−9.5=10.5 | | 1/8=1/2h | | 270=192-w | | 15c+3c-5c-11c=20 | | 11+m=13 | | 18=252-y | | 5.7(v–4)=3(3+v)–1 | | 4x2+32x+64=0 | | -2(3x-1)+3=35 | | -5x=67 | | 74=n/5+65 | | 7.2y+4.2=62.3 | | 5(w-2)=-2(1.5+5 | | 9x-15=6-4x | | 10n+5n-14n=4 | | 7x-10+6x+20=180 | | 50+1.50b=75+1b | | 3x+5x=15+x | | x2=196/225 | | 21x-5+10x-3=180 | | 2=2/m=7 | | F(3)=7+6x | | 226=170-u | | 5(x-6)+2x=7(x-5)+5 | | 4x^2-28x+65=0 | | 6(k+2+)1=13 | | +3(3x-6)=5(x-3)+15 |

Equations solver categories