x=(7x-30)(6x-10)

Simple and best practice solution for x=(7x-30)(6x-10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(7x-30)(6x-10) equation:



x=(7x-30)(6x-10)
We move all terms to the left:
x-((7x-30)(6x-10))=0
We multiply parentheses ..
-((+42x^2-70x-180x+300))+x=0
We calculate terms in parentheses: -((+42x^2-70x-180x+300)), so:
(+42x^2-70x-180x+300)
We get rid of parentheses
42x^2-70x-180x+300
We add all the numbers together, and all the variables
42x^2-250x+300
Back to the equation:
-(42x^2-250x+300)
We add all the numbers together, and all the variables
x-(42x^2-250x+300)=0
We get rid of parentheses
-42x^2+x+250x-300=0
We add all the numbers together, and all the variables
-42x^2+251x-300=0
a = -42; b = 251; c = -300;
Δ = b2-4ac
Δ = 2512-4·(-42)·(-300)
Δ = 12601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(251)-\sqrt{12601}}{2*-42}=\frac{-251-\sqrt{12601}}{-84} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(251)+\sqrt{12601}}{2*-42}=\frac{-251+\sqrt{12601}}{-84} $

See similar equations:

| 2y=4(1+7y)=-3y=4 | | r=–r−10 | | -8+5(n+5)=25+6n | | -20+12y=28 | | t-9=-3.87 | | 6(x-8)-2x=-24 | | 2(x-6+8=4x-2 | | 6,912=x^2+120x+3456 | | 25=12+2x | | 100=8.20x+59 | | -3p+1=-10 | | 2(x-6+8=4x=2 | | 24w=192 | | 8(5+8x)=-29-5x | | x/20+10=11 | | 2(x-4)=0.5(4x-16) | | t/17=22 | | (5x+6)+61=10 | | m+432=609 | | 5x+6+61=10 | | 7+x/5=13 | | 15-5=(b-2) | | 100=41x-2 | | e/4+3=5 | | 5.7-1=b | | 336=-21d | | 4(x-2)-12=8 | | 3(8a+6)=-26+2a | | 2x+5.4=13.8 | | 480=3q | | 115=x-30 | | 20+2c=15 |

Equations solver categories