x=(6x-7)(5x+8)

Simple and best practice solution for x=(6x-7)(5x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(6x-7)(5x+8) equation:



x=(6x-7)(5x+8)
We move all terms to the left:
x-((6x-7)(5x+8))=0
We multiply parentheses ..
-((+30x^2+48x-35x-56))+x=0
We calculate terms in parentheses: -((+30x^2+48x-35x-56)), so:
(+30x^2+48x-35x-56)
We get rid of parentheses
30x^2+48x-35x-56
We add all the numbers together, and all the variables
30x^2+13x-56
Back to the equation:
-(30x^2+13x-56)
We add all the numbers together, and all the variables
x-(30x^2+13x-56)=0
We get rid of parentheses
-30x^2+x-13x+56=0
We add all the numbers together, and all the variables
-30x^2-12x+56=0
a = -30; b = -12; c = +56;
Δ = b2-4ac
Δ = -122-4·(-30)·56
Δ = 6864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6864}=\sqrt{16*429}=\sqrt{16}*\sqrt{429}=4\sqrt{429}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{429}}{2*-30}=\frac{12-4\sqrt{429}}{-60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{429}}{2*-30}=\frac{12+4\sqrt{429}}{-60} $

See similar equations:

| c+1/2=1 | | x-3.2=-3.7 | | 12(x-9)=-50.4 | | 7(3x+1)-4=87 | | 4(x-3)+2(-x+3)=24 | | 3x^2-40x=-400 | | 35-y=249 | | 6x^2-10x-50=0 | | 3x^2+6x+9=69 | | 16x+17=19x-2 | | -5(k-3)-7=-4K+17 | | -4j-10=10-j+7 | | -3(x+5)=2x-5 | | 10x-13=8x+7 | | x+x=x+2x+x= | | 18y−17y+4=6 | | 5=2+11/n | | x=2=0 | | -3=-3(z+2) | | -12=-3x-15 | | 11x-4=8x-19 | | 180-5m=145 | | -1+7x+7=8(x+3)-6 | | 3(y+6)=5y+18 | | j-10=-j | | 3(3x+4)-6x=42 | | (5-x)/x=-0.6 | | -6x^2-11x-5=0 | | 3/5x-4=20 | | 7x+10+9x+10=180 | | 5x=10-100 | | (x-5)/x=-0.6 |

Equations solver categories