x=(5x+10)(7x-2)

Simple and best practice solution for x=(5x+10)(7x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(5x+10)(7x-2) equation:



x=(5x+10)(7x-2)
We move all terms to the left:
x-((5x+10)(7x-2))=0
We multiply parentheses ..
-((+35x^2-10x+70x-20))+x=0
We calculate terms in parentheses: -((+35x^2-10x+70x-20)), so:
(+35x^2-10x+70x-20)
We get rid of parentheses
35x^2-10x+70x-20
We add all the numbers together, and all the variables
35x^2+60x-20
Back to the equation:
-(35x^2+60x-20)
We add all the numbers together, and all the variables
x-(35x^2+60x-20)=0
We get rid of parentheses
-35x^2+x-60x+20=0
We add all the numbers together, and all the variables
-35x^2-59x+20=0
a = -35; b = -59; c = +20;
Δ = b2-4ac
Δ = -592-4·(-35)·20
Δ = 6281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-59)-\sqrt{6281}}{2*-35}=\frac{59-\sqrt{6281}}{-70} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-59)+\sqrt{6281}}{2*-35}=\frac{59+\sqrt{6281}}{-70} $

See similar equations:

| 2x32=96 | | 5+x+35=90 | | 1/x=0.00005 | | 5x–41=3x+11 | | -3x-10=4x+39 | | 1/2(5x–8x)=–6 | | 5/6x-1/6=1/2x+15/6 | | 12(5x–8x)=–6 | | 5x-1.5=6+2.5x | | 18/2=a | | 5x-40=20+2x | | 4x+3.5=2(2x+2)x | | 3(x-4)+2x-9=140 | | 7x-19x=5 | | 4x+12=37–x | | 10+4t=30–6t | | 12x(2+7)–24÷12= | | 23h-6=17 | | 2(x-5)=x+22 | | -114=6(1-5b) | | 5x+2=97 | | 6x#=54 | | -5(4+10b)=180 | | 10+n/6=2 | | 2b+1|=9 | | -25x^2-30x+11=0 | | 7x=952 | | 0.4=12/y | | x2+11x+22=0 | | 4x+3+45=180 | | 12x-9=17x+3=96+96 | | 9b-11=-20 |

Equations solver categories