If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=(5/9)(x-32)
We move all terms to the left:
x-((5/9)(x-32))=0
Domain of the equation: 9)(x-32))!=0We add all the numbers together, and all the variables
x∈R
x-((+5/9)(x-32))=0
We multiply parentheses ..
-((+5x^2+5/9*-32))+x=0
We multiply all the terms by the denominator
-((+5x^2+5+x*9*-32))=0
We calculate terms in parentheses: -((+5x^2+5+x*9*-32)), so:We get rid of parentheses
(+5x^2+5+x*9*-32)
We get rid of parentheses
5x^2+x*9*+5-32
We add all the numbers together, and all the variables
5x^2+x*9*-27
Wy multiply elements
5x^2+9x^2-27
We add all the numbers together, and all the variables
14x^2-27
Back to the equation:
-(14x^2-27)
-14x^2+27=0
a = -14; b = 0; c = +27;
Δ = b2-4ac
Δ = 02-4·(-14)·27
Δ = 1512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1512}=\sqrt{36*42}=\sqrt{36}*\sqrt{42}=6\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{42}}{2*-14}=\frac{0-6\sqrt{42}}{-28} =-\frac{6\sqrt{42}}{-28} =-\frac{3\sqrt{42}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{42}}{2*-14}=\frac{0+6\sqrt{42}}{-28} =\frac{6\sqrt{42}}{-28} =\frac{3\sqrt{42}}{-14} $
| x=(5/9)(x-32 | | 4x+5=(x+1)-x | | F(x)=5(10)-9 | | 147-3h2=0 | | n(n-7)=16 | | 1+n=7+2n | | -3+6n=5n+5 | | (2x-10)+(x-15)=95 | | 2x+12=3‐x | | 2x+x+8=80 | | 7x+9=23. | | a-2.5=4,5 | | -1+6x=5-2(1-3x) | | 4x-2=6x-32 | | 10+x+2x=70 | | -8-2n=1+7n | | 1(x-1)-3=8(x+2) | | 6x=50/3 | | 2x²+14x-1=0 | | (4x+1)=(5x-10) | | 122=5^n-3 | | A+3/b=3 | | x²–6x+1=0 | | 13x+9=2x+97 | | x^2+2=3^(2/3)+3^(-(2/3)) | | (3x^2-11x-4)=(3x+1) | | x^2-9x=580 | | 30x+x=88-10x-3x | | -3p-6=p+2 | | 2x+2-4=12 | | 20p/3=1/4 | | -10-v=v+4 |