x=(4+2x)(8+2x)

Simple and best practice solution for x=(4+2x)(8+2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(4+2x)(8+2x) equation:



x=(4+2x)(8+2x)
We move all terms to the left:
x-((4+2x)(8+2x))=0
We add all the numbers together, and all the variables
x-((2x+4)(2x+8))=0
We multiply parentheses ..
-((+4x^2+16x+8x+32))+x=0
We calculate terms in parentheses: -((+4x^2+16x+8x+32)), so:
(+4x^2+16x+8x+32)
We get rid of parentheses
4x^2+16x+8x+32
We add all the numbers together, and all the variables
4x^2+24x+32
Back to the equation:
-(4x^2+24x+32)
We add all the numbers together, and all the variables
x-(4x^2+24x+32)=0
We get rid of parentheses
-4x^2+x-24x-32=0
We add all the numbers together, and all the variables
-4x^2-23x-32=0
a = -4; b = -23; c = -32;
Δ = b2-4ac
Δ = -232-4·(-4)·(-32)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{17}}{2*-4}=\frac{23-\sqrt{17}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{17}}{2*-4}=\frac{23+\sqrt{17}}{-8} $

See similar equations:

| 5×+2y=7 | | 0.12x+15.18=0.09x+15.68 | | 6i=-42 | | 15.18x+0.12=15.68x+0.09 | | 15.18+0.12x=15.68+0.09x | | –6v=90 | | 6(5-x)=2(5+x) | | 40°=12x+8 | | Y=3.5x^2+21x+31.5 | | 8x+3x-2=45 | | 3x+4-5x=5x-2-5x | | 2x-8.6/2=-2.3x= | | 12+6.4n=6+6.8n | | x^{3}-6x+1=0 | | 3y2-12y+8=0 | | 7x6=28 | | -2k^2-k+3=0 | | (6z+1)(-8z-5)=0 | | 3x(5+10)=0 | | (5n+3)(-4n-6)=0 | | 5+10x(3+2)=2 | | 7u-6=2u-21=36 | | -5x^2=-2645 | | 35=h-19 | | -6(-y+3)=2y+7 | | .05x=140 | | |2,73^x-1-x|=(x^2)/(2)*2,73^|x| | | 0.12(x+1)+0.08x=0.3x+0.45 | | x9​=25x​ | | r-9÷2=4 | | 8x-38=17-3x | | 5y²-28y+15=0 |

Equations solver categories