x=(2x-3)(x+9)

Simple and best practice solution for x=(2x-3)(x+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(2x-3)(x+9) equation:



x=(2x-3)(x+9)
We move all terms to the left:
x-((2x-3)(x+9))=0
We multiply parentheses ..
-((+2x^2+18x-3x-27))+x=0
We calculate terms in parentheses: -((+2x^2+18x-3x-27)), so:
(+2x^2+18x-3x-27)
We get rid of parentheses
2x^2+18x-3x-27
We add all the numbers together, and all the variables
2x^2+15x-27
Back to the equation:
-(2x^2+15x-27)
We add all the numbers together, and all the variables
x-(2x^2+15x-27)=0
We get rid of parentheses
-2x^2+x-15x+27=0
We add all the numbers together, and all the variables
-2x^2-14x+27=0
a = -2; b = -14; c = +27;
Δ = b2-4ac
Δ = -142-4·(-2)·27
Δ = 412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{412}=\sqrt{4*103}=\sqrt{4}*\sqrt{103}=2\sqrt{103}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{103}}{2*-2}=\frac{14-2\sqrt{103}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{103}}{2*-2}=\frac{14+2\sqrt{103}}{-4} $

See similar equations:

| 3x+24=-2x+124 | | 4x+2=-2x+20 | | -3x+5=3x-25 | | 5x+(7/2)=(3x/2)-14 | | (m+5)(m-2)=0 | | 21x/3=113/3 | | 21x=113 | | 9x+27=12x+30 | | 10x+1=x+82 | | -2x+20=5x-1 | | 210=(10-27/x)*1.1x | | 9x+5=-2x+93 | | -2x+16=3x+1 | | 100x=50x-20 | | 9x-6-10x+1/15=x | | 3x-2/5-2x-1/3=x | | -x-5+x=0 | | (3x)(7x)=756 | | 40x=20x+4 | | 4x/12+10=x | | (2x-1)=50 | | 8x+2=-2x+42 | | 5x+4=108 | | -2x+20=6x+4 | | -2x+20=6x=4 | | (3x+x)+(3x+x)=60 | | (3x+x)²=60 | | (3x+x)^2=60 | | (9x+3)=(12x-5) | | 9x+12=12x-12 | | 8x+40=5x+52 | | y’’+9y=0 |

Equations solver categories