If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=(2x+3)(x-6)
We move all terms to the left:
x-((2x+3)(x-6))=0
We multiply parentheses ..
-((+2x^2-12x+3x-18))+x=0
We calculate terms in parentheses: -((+2x^2-12x+3x-18)), so:We add all the numbers together, and all the variables
(+2x^2-12x+3x-18)
We get rid of parentheses
2x^2-12x+3x-18
We add all the numbers together, and all the variables
2x^2-9x-18
Back to the equation:
-(2x^2-9x-18)
x-(2x^2-9x-18)=0
We get rid of parentheses
-2x^2+x+9x+18=0
We add all the numbers together, and all the variables
-2x^2+10x+18=0
a = -2; b = 10; c = +18;
Δ = b2-4ac
Δ = 102-4·(-2)·18
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{61}}{2*-2}=\frac{-10-2\sqrt{61}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{61}}{2*-2}=\frac{-10+2\sqrt{61}}{-4} $
| 23x-6=180 | | -16+6w+5=6w-15-9w | | .50x+.25(30)=38.5 | | 6x+25=13-2x | | 1/3(y)-6=15 | | X+117=x+75 | | –9q−5=–8q | | 8y-15=10y+1 | | 12x+18=6x+9 | | 3(4x-1=-2x+19+8x-4 | | -46-23=45x+23 | | 1/4n+3=7 | | 43+3y-14=15y-13-5y | | 4=3(k-2)=34 | | 44=-4(3n-2) | | -9(v+4)+4v+6=8v+10 | | -3x+5=5x+-8 | | 11/10r=77/10 | | 5(x−3)+3(x+2)=7x | | -4x(1.5x-5)+4x=26 | | .125y-7=-6 | | 3(2x+4)=12x+48 | | 3d-(4-4d)=10 | | 12x+17=93 | | −17x−8+x=24 | | (−5x−4)3=−8 | | 3x-2(x+3)=5 | | 35= −7a+14−7a+14 | | 6+r/6=7 | | 136=-8(7+4x) | | 7.25g+12.50=48.75 | | 2x+30=7x+25 |