x=(25-x)(x-7)

Simple and best practice solution for x=(25-x)(x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(25-x)(x-7) equation:



x=(25-x)(x-7)
We move all terms to the left:
x-((25-x)(x-7))=0
We add all the numbers together, and all the variables
x-((-1x+25)(x-7))=0
We multiply parentheses ..
-((-1x^2+7x+25x-175))+x=0
We calculate terms in parentheses: -((-1x^2+7x+25x-175)), so:
(-1x^2+7x+25x-175)
We get rid of parentheses
-1x^2+7x+25x-175
We add all the numbers together, and all the variables
-1x^2+32x-175
Back to the equation:
-(-1x^2+32x-175)
We get rid of parentheses
1x^2-32x+x+175=0
We add all the numbers together, and all the variables
x^2-31x+175=0
a = 1; b = -31; c = +175;
Δ = b2-4ac
Δ = -312-4·1·175
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-3\sqrt{29}}{2*1}=\frac{31-3\sqrt{29}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+3\sqrt{29}}{2*1}=\frac{31+3\sqrt{29}}{2} $

See similar equations:

| 2y+4y+6y=80/3 | | Y=15x+9=180 | | x=16/9 | | 7x^2=-14x-5 | | y=20(0.5)^5 | | 3(5a)=6(30)/2 | | 1/2x=2-x | | y=20(0.5)^4 | | y=20(0.5)^3 | | 11y+1=13y-4 | | y=20(0.5)^2 | | 24=1/4n | | y=20(0.5)^1 | | (5-w)(3w+2)=0 | | 4/5x=3/3x | | x/2-5=2x/5+3/2 | | 4=2(a-7)2 | | 12x4-27x3+6x2=0 | | -3.6x=-64.8 | | x+1/5=2x/3-1 | | 8^2x+2=2^3x | | -8(3b+1)+(25b-9)=0 | | 2x+(-x)+2x+(-8)=3x | | 1000x2-64=0 | | x^2+24x=128 | | (-x)+4x+(-2)=3(-x)+(-10) | | 0.2x+16=16+0.7x | | -x+4x+(-2)=3(-x)+(-10) | | 6s-18s=72 | | 13+6k-k^2=0 | | 17-x=2×+1 | | 3x+2(-x)+(-4)=2x+1 |

Equations solver categories