x=(109.61x+8557.7)-8557.7/109.61

Simple and best practice solution for x=(109.61x+8557.7)-8557.7/109.61 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(109.61x+8557.7)-8557.7/109.61 equation:



x=(109.61x+8557.7)-8557.7/109.61
We move all terms to the left:
x-((109.61x+8557.7)-8557.7/109.61)=0
We multiply all the terms by the denominator
x*109.61)-((109.61x+8557.7)-8557.7=0
Wy multiply elements
109x^2-8557.7=0
a = 109; b = 0; c = -8557.7;
Δ = b2-4ac
Δ = 02-4·109·(-8557.7)
Δ = 3731157.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{3731157.2}}{2*109}=\frac{0-\sqrt{3731157.2}}{218} =-\frac{\sqrt{}}{218} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{3731157.2}}{2*109}=\frac{0+\sqrt{3731157.2}}{218} =\frac{\sqrt{}}{218} $

See similar equations:

| 7t-50=10t-86 | | -19-6p=-19p+20 | | 6=-2-2x=10 | | z-10=2z-63 | | 8/3c-2=2/3​c−12 | | 12y-4.75=13.9y | | 4.2+z=-8 | | 13x-22=43 | | (a-1)+5=33 | | 8(4-3x)=5(11-9x) | | 13x-22=42 | | 3s-93=2s-61 | | 2(2-x)+10+1(-x)=2(-x)+13 | | -8+4r=-4r | | 7x-8x-10=3x-3-6 | | 6x+42=-6 | | 5t=t+20 | | 3(-x)-(-5+x)=2x+(-3) | | 256=(-4)^n | | 4x+20=10x+30 | | 7(3-2x)=4(10-8x) | | 2x*13x=12x+2x | | -8z+12+9z=-14-z | | 11-2x+12=0 | | 6x2-19x+3=0 | | -2x+9=-2(x+2)+8 | | 5u-56=4u-88 | | 9x=3^(-2x-12) | | 48x+79=48x+26 | | 4p+31=p+46 | | 4x+-2=42 | | 48x+79=48x=26​ |

Equations solver categories