If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=(1+0.05x)(40+20x)
We move all terms to the left:
x-((1+0.05x)(40+20x))=0
We add all the numbers together, and all the variables
x-((0.05x+1)(20x+40))=0
We multiply parentheses ..
-((+0x^2+0x+20x+40))+x=0
We calculate terms in parentheses: -((+0x^2+0x+20x+40)), so:We add all the numbers together, and all the variables
(+0x^2+0x+20x+40)
We get rid of parentheses
0x^2+0x+20x+40
We add all the numbers together, and all the variables
x^2+21x+40
Back to the equation:
-(x^2+21x+40)
x-(x^2+21x+40)=0
We get rid of parentheses
-x^2+x-21x-40=0
We add all the numbers together, and all the variables
-1x^2-20x-40=0
a = -1; b = -20; c = -40;
Δ = b2-4ac
Δ = -202-4·(-1)·(-40)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{15}}{2*-1}=\frac{20-4\sqrt{15}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{15}}{2*-1}=\frac{20+4\sqrt{15}}{-2} $
| -113-2x=62+5x | | 3^x-3=87 | | 13-12=x/6 | | 1=1+b/1 | | 1+x/3=3 | | (-5x)-(3(-3))=14 | | 3+21=3n | | 8x+2=18-10x | | -2n+10.5=4.4n | | 4=7+b/6 | | 3=m÷12 | | 5+4x=60 | | 35+-3x=7x+4 | | -113-11x=202+4x | | 5x+4/5=x-6/7 | | 4(a)=36 | | 3x-61=10x+58 | | 8n=40+16 | | 3(5s+2)-11s=2(2s+6)-16 | | 8^x=40 | | 140.95=3.14(r)^2 | | 1/2+5x=17 | | 200=50+15x | | 9+a/2=4 | | 15x=14-(-16) | | 2(x-45)+112=180 | | 3b+4.4=2.6b-6b | | 31.5=3.5b^2 | | 0=x+10/x-3 | | 5/100=31/x | | −(2x)2+1=−3 | | u/0.7=8.4/0.7 |