If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=961
We move all terms to the left:
x2-(961)=0
We add all the numbers together, and all the variables
x^2-961=0
a = 1; b = 0; c = -961;
Δ = b2-4ac
Δ = 02-4·1·(-961)
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3844}=62$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-62}{2*1}=\frac{-62}{2} =-31 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+62}{2*1}=\frac{62}{2} =31 $
| 8=d/6-3 | | 3(5−2x)=−2(6–3x)−10x | | x=-260 | | g/7+1=14 | | 3(5−2x)=−2(6–3x)−10x x=-260 | | 7j+16=51 | | j/2-2=8 | | 15x+8=45 | | 10x-51=3x+5 | | 6x-16=5x+4 | | 4(x+3)=5(3x-3) | | 13-2h=5 | | 3a+15=-2(5+a) | | 3x-2(5x-8)=9-5x-7 | | 125-x=75 | | 7-3x=22* | | u-85/8=1 | | r/4-3=2 | | 6n=7=2n+5 | | d/3+15=18 | | 3k-16=2 | | 3x+6=-17 | | 6x(x-3)-2x(x-1)=10 | | 6·(x-3)-2·(x-1)=10 | | (10-x)/4=-1* | | 4a+6=6a-16 | | 3(x+10)=10 | | 7y-6=23 | | -(2x+3)^3=84 | | (10-x)/4=-1 | | 5y-5=25, | | a4+6=14 |