x2=58/25

Simple and best practice solution for x2=58/25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2=58/25 equation:



x2=58/25
We move all terms to the left:
x2-(58/25)=0
We add all the numbers together, and all the variables
x2-(+58/25)=0
We add all the numbers together, and all the variables
x^2-(+58/25)=0
We get rid of parentheses
x^2-58/25=0
We multiply all the terms by the denominator
x^2*25-58=0
Wy multiply elements
25x^2-58=0
a = 25; b = 0; c = -58;
Δ = b2-4ac
Δ = 02-4·25·(-58)
Δ = 5800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5800}=\sqrt{100*58}=\sqrt{100}*\sqrt{58}=10\sqrt{58}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{58}}{2*25}=\frac{0-10\sqrt{58}}{50} =-\frac{10\sqrt{58}}{50} =-\frac{\sqrt{58}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{58}}{2*25}=\frac{0+10\sqrt{58}}{50} =\frac{10\sqrt{58}}{50} =\frac{\sqrt{58}}{5} $

See similar equations:

| 3(2x+4)+1=-17 | | 9x+9=4x-26 | | -x+17=5(2x-1) | | (5x-15)+(75-x)=180 | | (7x+14)+(4x+89)=180 | | 4+20/2x=8 | | 2x-14=3x-13 | | -2x-17=-x-10 | | -5x-17=-2x-35 | | 4x(x^2-13x+42)=0 | | 4x(x^2-13x)+42=0 | | x+36=4(x+3) | | 3x-7=-2x+38 | | 3x+12=2x+19 | | 27=3(3x-4)-6 | | 2(3x+4)+6x=38 | | x-5=-5x+43 | | -4x-13=-3x-23 | | x+8=-4x-7 | | 5(3x-4)=3x-32 | | -6x+16=-2x+0 | | -9x+9=-5x+37 | | X×y=120 | | x+2=-4x-23 | | 2x+28=-6x-28 | | 3x-15=5x-19 | | 2(3x+5)=-x+31 | | m-15.6=-32.24 | | -2x+17=2x-3 | | -2x+4=-x+0 | | 9x-6=2x-20 | | 6x-14=3x-32 |

Equations solver categories