If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=49144
We move all terms to the left:
x2-(49144)=0
We add all the numbers together, and all the variables
x^2-49144=0
a = 1; b = 0; c = -49144;
Δ = b2-4ac
Δ = 02-4·1·(-49144)
Δ = 196576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{196576}=\sqrt{16*12286}=\sqrt{16}*\sqrt{12286}=4\sqrt{12286}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{12286}}{2*1}=\frac{0-4\sqrt{12286}}{2} =-\frac{4\sqrt{12286}}{2} =-2\sqrt{12286} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{12286}}{2*1}=\frac{0+4\sqrt{12286}}{2} =\frac{4\sqrt{12286}}{2} =2\sqrt{12286} $
| 3(2x+7)=84 | | 24=6(k+2) | | 3-((16n-32)/5)=11 | | -5(8b+5)+6=221 | | x+5(38.25+2)-2(38.25+4)=155 | | 100000=50(3)^x | | 9(v+3)=5v+15 | | -8(y-4)=-7y-4 | | q/4+24=20 | | 1/2(6)-4/5y=19 | | 9x=24x+15 | | x+3/9+x+2/4=1 | | 2-3z=6z-5-z | | 9(x+2)=5(x-3) | | 7+7x=-3x+97 | | t+6.5/1=2.2 | | 9+x=5x+3 | | 36=-5t-9 | | -4(7)+7y+7=0 | | 6z-13-2+3=0 | | 14=-2(x-1)+6 | | 4n-20=(-32) | | 3y+1=8(24)-61=180 | | -55=-9v+35 | | 4.9t^2-8t+1.8=0 | | 6(c-18)=-24 | | 6(j-79)=60 | | 2(n-12)+1=-2n+25 | | 2(3x+9)=-46+10 | | 15x+30(x-2)=165 | | -9a=27;a=3 | | -a^2-3a+28=0 |