If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=3681
We move all terms to the left:
x2-(3681)=0
We add all the numbers together, and all the variables
x^2-3681=0
a = 1; b = 0; c = -3681;
Δ = b2-4ac
Δ = 02-4·1·(-3681)
Δ = 14724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14724}=\sqrt{36*409}=\sqrt{36}*\sqrt{409}=6\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{409}}{2*1}=\frac{0-6\sqrt{409}}{2} =-\frac{6\sqrt{409}}{2} =-3\sqrt{409} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{409}}{2*1}=\frac{0+6\sqrt{409}}{2} =\frac{6\sqrt{409}}{2} =3\sqrt{409} $
| 3+24x=14+32x | | 3/4x-1/2-4=12 | | -30=-5/7y | | 5f=-60 | | -8/5=-2v | | r=80=17 | | 2x-18=38 | | 4.4=-1+x | | 4+10r-1=9r+12-2r | | 30x+20x=230 | | -5/9y=15 | | 1.67a=-35 | | 32=t-39 | | Y=x+5x=-10 | | 3y/4=-21 | | y/8+2=-19 | | 3x-2/3-2x+5/4=1-x/6 | | (3x-2)=-6x | | -7x-6(-4x-11)=-70 | | 1.6a=-35 | | Y=-3x-10x=2 | | n-16.8=-22.7 | | f-46=-15 | | 9.61=t+2.41 | | 5(x-1)=37+2x | | 2.75+80=n | | z/2=2.1 | | -5(4v+6)+5=-125 | | -2x+4=-4x+9 | | 4g=10.72 | | w+4.8=6.2 | | 1/5(25x+5)-5=4 |