x2=25-x2

Simple and best practice solution for x2=25-x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2=25-x2 equation:



x2=25-x2
We move all terms to the left:
x2-(25-x2)=0
We add all the numbers together, and all the variables
-(-1x^2+25)+x2=0
We add all the numbers together, and all the variables
x^2-(-1x^2+25)=0
We get rid of parentheses
x^2+1x^2-25=0
We add all the numbers together, and all the variables
2x^2-25=0
a = 2; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·2·(-25)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*2}=\frac{0-10\sqrt{2}}{4} =-\frac{10\sqrt{2}}{4} =-\frac{5\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*2}=\frac{0+10\sqrt{2}}{4} =\frac{10\sqrt{2}}{4} =\frac{5\sqrt{2}}{2} $

See similar equations:

| 12=15-4(-3-4w) | | 5(6x/5)-5=5(19) | | 4x–9=39 | | 4x+0.6=9+10 | | 6+2(3x-6)=3(X+2) | | F(x)=-2(0.8)x | | 9v-5v=4 | | 80=0.5x^2-40x-600 | | 12-6x=6(4+2x) | | 80=0.5x^2-40x+600 | | 50=0.5x^2-40x-600 | | 5(3x-5)-5=5(x-2)+60 | | 50=0.5x^2-40x+600 | | 5(3x-5)-5=5x-2+60 | | -4+y/4=4 | | 90-v=242 | | 7y=22-8. | | 9x+51+9x=180 | | 2x(x-5=0 | | -(5y-9)-(-4y-3)=6 | | -7p-5=9-4p | | 100x-0.5x^2-60x-300=0 | | -4.9x^2+265x+150=0 | | 2(x-4)2=26 | | 7x=14x2 | | U=4z-3 | | 3^x=31 | | 9x+7x-10=-15x+4 | | -0.5x^2+40x-300=300 | | 1=1y-2 | | 5x*4=75 | | 11x+20=-11x+12 |

Equations solver categories