x2=2(x2-3x+1)

Simple and best practice solution for x2=2(x2-3x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2=2(x2-3x+1) equation:



x2=2(x2-3x+1)
We move all terms to the left:
x2-(2(x2-3x+1))=0
We add all the numbers together, and all the variables
-(2(+x^2-3x+1))+x2=0
We add all the numbers together, and all the variables
x^2-(2(+x^2-3x+1))=0
We calculate terms in parentheses: -(2(+x^2-3x+1)), so:
2(+x^2-3x+1)
We multiply parentheses
2x^2-6x+2
Back to the equation:
-(2x^2-6x+2)
We get rid of parentheses
x^2-2x^2+6x-2=0
We add all the numbers together, and all the variables
-1x^2+6x-2=0
a = -1; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·(-1)·(-2)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{7}}{2*-1}=\frac{-6-2\sqrt{7}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{7}}{2*-1}=\frac{-6+2\sqrt{7}}{-2} $

See similar equations:

| 4^x+5=473 | | 6+6x6+6=x | | x/13=17/7 | | 37x+1/2-(x+1/4)=(4x-7)+5 | | X/4+x/5=40 | | (X+2)*(x-2)=7 | | 5(2x-8)-2=5(x-3)=3 | | 3^x+1=2^2x-3 | | 6b-1=-4+4b+3 | | x+999999=1 | | -19=-7n-3n | | 5(2x-8)-2=5(x | | -6y+9y=-16 | | 27=3+7(d+9) | | 8m/10=-4 | | -1/5(2x-25)+1/3(4x+9)=1 | | -5a-2-4=23 | | G(x)=5x-7 | | 8x/2=4x | | 32-2x=-6(5x+9) | | -1/2(4g-6)=-4 | | 25*x(5-3*x)=44+(4*x+7)-2 | | 60h+30=350 | | 3/5x+11=4/5x-1 | | 4+x*0.5-0.5*0.25=0 | | 2x*32=0 | | (2x+4)^3=0 | | F(x)=3x^4-6x^2 | | 7(5-8r)=27 | | 5v=72-4v | | 3(7x+1)-2x=-5 | | 2x^2-3=105 |

Equations solver categories