x2=16/5

Simple and best practice solution for x2=16/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2=16/5 equation:



x2=16/5
We move all terms to the left:
x2-(16/5)=0
We add all the numbers together, and all the variables
x2-(+16/5)=0
We add all the numbers together, and all the variables
x^2-(+16/5)=0
We get rid of parentheses
x^2-16/5=0
We multiply all the terms by the denominator
x^2*5-16=0
Wy multiply elements
5x^2-16=0
a = 5; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·5·(-16)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*5}=\frac{0-8\sqrt{5}}{10} =-\frac{8\sqrt{5}}{10} =-\frac{4\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*5}=\frac{0+8\sqrt{5}}{10} =\frac{8\sqrt{5}}{10} =\frac{4\sqrt{5}}{5} $

See similar equations:

| 0=15n-3n^2 | | 9.801/x=27 | | m2=79-3 | | 6k+3=-7k-2 | | 5x-(2+3)=45 | | 95+x+12=180 | | 7/21x=x | | C=0.10d+46 | | 26-7y=5 | | 16x+-6=90 | | -a+13=31 | | 16=-2p-18 | | 17-w=32 | | 12a-4a+2=10 | | 7x-22)=90 | | 0.75x^2=48 | | 200=-16t*2+105 | | 4.5+x=14.2 | | 4x+2+8x-3=180 | | 1=-(k+5) | | 3(n-15)=3 | | 122+2x-20=180 | | 122=2x-20 | | 62=2x-18 | | -0.5(x+2)=20 | | 5(e+7)=50 | | 5y-(2+3)=45 | | 0.36*y=18 | | x+0.08x=630 | | 6x+(3+3)=30 | | 2x+7+5x-30=360 | | 2x+7+5x-30=360.x |

Equations solver categories