If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=1024
We move all terms to the left:
x2-(1024)=0
We add all the numbers together, and all the variables
x^2-1024=0
a = 1; b = 0; c = -1024;
Δ = b2-4ac
Δ = 02-4·1·(-1024)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*1}=\frac{-64}{2} =-32 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*1}=\frac{64}{2} =32 $
| 1.2x+24.3= | | -1.2x+24.3=-24.9 | | 3(2+4)+x-18=10 | | -34+x/6=26 | | 4x+3x-(2x6)=14 | | Y=x2-14+40 | | -7h-6=141 | | 4=y/3-(-2) | | 6(3x-2)=13 | | 2(0.9)^x=0.32 | | x^{3}-5=59 | | 3(5-3x)+1=88 | | 3.5/x=-7 | | 3x-(-2x-13)=-12 | | 5=4x−15 | | -5y+15=-60 | | 1x+2x+3x+4-3=19 | | 2/6×+1/2×+600=x | | 2(0.9^x)=0.32 | | 4(3-2t)=-24 | | 2e=42.8 | | (0.2x-1.8)÷5=4.2 | | n/4=13.1 | | -18-6k-6=18k | | √x-13=4 | | 2x/6+1×/2+600=x | | x−20+20+80=90 | | 7y=2=5y+12 | | 5x=-x+13 | | 30s+7=9 | | 118=-2+5(-6-5x) | | (x+7)=2(3x-4) |