If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-80x+900=0
We add all the numbers together, and all the variables
x^2-80x+900=0
a = 1; b = -80; c = +900;
Δ = b2-4ac
Δ = -802-4·1·900
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-20\sqrt{7}}{2*1}=\frac{80-20\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+20\sqrt{7}}{2*1}=\frac{80+20\sqrt{7}}{2} $
| 2(3x-3)-5x=9 | | (3x-2)^(2)=18 | | (($5,000-A)/$5,000)x(360/91)=0.35 | | (2x+13)=(4x-14) | | (2x+13)+(4x-14)=180 | | 2(3-5z)=3(z-7) | | 2y+298=180 | | x(1/2)x-20=8 | | 3(24x-2)=30 | | 3/11+x=9 | | 6x^4+10x=0 | | x-2x+25=-17 | | x-25=-13 | | xx-25=-13 | | b/0.8=4 | | y/31=3 | | -5e=75 | | 2x=-7+1/x | | 8(x-7)+7=-2(x+1) | | -9x-80=7x | | 2x+4x=10+2 | | a²+5a+25=0 | | w^2-32w+152=0 | | 27x=1/9 | | 20x=35+5 | | 2(7+5y)-9y=-35 | | 16=4+3(t+1) | | 4(1+6x)-43=3(3+4x) | | 2−3x=4x+9 | | 7x−1=12x−1 | | 3x+2x+54=−(−5x+2) | | n+875=2020 |