x2-6x+9=(5X+1)(X-3)

Simple and best practice solution for x2-6x+9=(5X+1)(X-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2-6x+9=(5X+1)(X-3) equation:



x2-6x+9=(5x+1)(x-3)
We move all terms to the left:
x2-6x+9-((5x+1)(x-3))=0
We add all the numbers together, and all the variables
x^2-6x-((5x+1)(x-3))+9=0
We multiply parentheses ..
x^2-((+5x^2-15x+x-3))-6x+9=0
We calculate terms in parentheses: -((+5x^2-15x+x-3)), so:
(+5x^2-15x+x-3)
We get rid of parentheses
5x^2-15x+x-3
We add all the numbers together, and all the variables
5x^2-14x-3
Back to the equation:
-(5x^2-14x-3)
We add all the numbers together, and all the variables
x^2-6x-(5x^2-14x-3)+9=0
We get rid of parentheses
x^2-5x^2-6x+14x+3+9=0
We add all the numbers together, and all the variables
-4x^2+8x+12=0
a = -4; b = 8; c = +12;
Δ = b2-4ac
Δ = 82-4·(-4)·12
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16}{2*-4}=\frac{-24}{-8} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16}{2*-4}=\frac{8}{-8} =-1 $

See similar equations:

| 56=(6x+2) | | 5x-6x+4=17 | | 4n-5=6n-7 | | 3n+5=4n+6 | | X^2+x^2=11.3 | | 2x-1/3=2x/3+4 | | 9(x-5)-3=48 | | 4+20=c | | -28-(-33)=x/11 | | 36+u=10u | | 12h−8h=20 | | 64-5w=3w | | (3x-50)+(3x-50)=180 | | 340+x(10)=400 | | 5(2)=b | | 1x+8x=5x-36 | | 6(0.50)=a | | 7m–3(m-2)=(3m–5) | | j-17=169 | | r/10=28 | | t+626=713 | | 3x+6=-(9x-63) | | v+426=748 | | p+47=93 | | 90=q+42 | | t+44=63 | | a+12=53 | | -2(7u-1)+6u=7(u+2) | | 4(4x-7)+2(6x+15)=4 | | v-9.12=8.2 | | 4y+1=3-10y | | 148+2x=193-x |

Equations solver categories