x2-6x+20=(x-3)2+3x-1

Simple and best practice solution for x2-6x+20=(x-3)2+3x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2-6x+20=(x-3)2+3x-1 equation:



x2-6x+20=(x-3)2+3x-1
We move all terms to the left:
x2-6x+20-((x-3)2+3x-1)=0
We add all the numbers together, and all the variables
x^2-6x-((x-3)2+3x-1)+20=0
We calculate terms in parentheses: -((x-3)2+3x-1), so:
(x-3)2+3x-1
We add all the numbers together, and all the variables
3x+(x-3)2-1
We multiply parentheses
3x+2x-6-1
We add all the numbers together, and all the variables
5x-7
Back to the equation:
-(5x-7)
We get rid of parentheses
x^2-6x-5x+7+20=0
We add all the numbers together, and all the variables
x^2-11x+27=0
a = 1; b = -11; c = +27;
Δ = b2-4ac
Δ = -112-4·1·27
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{13}}{2*1}=\frac{11-\sqrt{13}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{13}}{2*1}=\frac{11+\sqrt{13}}{2} $

See similar equations:

| x+4+x+4+4x=180 | | 3x/2-x=4+1/2x | | −3x+1=4 | | x-79=41-3x | | 6^(x)^=40 | | 22/9r=11/9 | | 3x-10+2x+27=4x | | 6^(x)=40 | | x/3+7=25. | | -2(u+3=3(u+4)+7 | | 5−2x=9 | | 0.03x-0.1=2.3 | | 0.03x−0.1=2.3 | | 2j-8=22 | | 3(2+y)-y=4=2(y+1) | | 2•4=35w | | Y2+2y-15=0 | | 0.75x-0.31=0.8x | | -18g-(-10g)=16 | | 9-4a=6 | | 3(2y+3)=15 | | 12x=17000 | | 0=4h | | 2x+4x+10+70=180 | | 3n-8n=32-n | | w/5+17=33 | | -5y-27=42 | | -2(2x-2)=-4x+4 | | 40=u/4+16 | | -6(6x+4)=36x+24 | | -6(6x+7)=36x+42 | | •-6x+17=3x-10 |

Equations solver categories