x2-6x+1=3x+5/2

Simple and best practice solution for x2-6x+1=3x+5/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2-6x+1=3x+5/2 equation:



x2-6x+1=3x+5/2
We move all terms to the left:
x2-6x+1-(3x+5/2)=0
We add all the numbers together, and all the variables
x2-6x-(+3x+5/2)+1=0
We add all the numbers together, and all the variables
x^2-6x-(+3x+5/2)+1=0
We get rid of parentheses
x^2-6x-3x+1-5/2=0
We multiply all the terms by the denominator
x^2*2-6x*2-3x*2-5+1*2=0
We add all the numbers together, and all the variables
x^2*2-6x*2-3x*2-3=0
Wy multiply elements
2x^2-12x-6x-3=0
We add all the numbers together, and all the variables
2x^2-18x-3=0
a = 2; b = -18; c = -3;
Δ = b2-4ac
Δ = -182-4·2·(-3)
Δ = 348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{348}=\sqrt{4*87}=\sqrt{4}*\sqrt{87}=2\sqrt{87}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{87}}{2*2}=\frac{18-2\sqrt{87}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{87}}{2*2}=\frac{18+2\sqrt{87}}{4} $

See similar equations:

| 0.2y=3 | | 2y+4=y+43 | | 4u–6=3u | | 2z-34=z+26 | | 35,000-2x=0 | | 2c-28=c+44 | | 4x2-1=35 | | 2c+4=c+46 | | x+x-9+2x=83 | | 475-s=164 | | 610(t)=16t^2 | | 5x(x+5)=40x+5(x^2+11) | | 489=118+7n | | 2u-46=u+45 | | 1=f/29-3 | | 16d-46=226 | | 2z-50=z+50 | | 57+x+x=907 | | z-535=288 | | 5(-3x+2)+(x-3)=-4(4x+5)+13 | | k/6=10 | | 0.25=0.75+r | | 2v-50=v+49 | | 37=6y+1 | | 7^x+5=4 | | 5(-3x+2)+(x-3)=-4(4x+5) | | 50/p=5 | | 8(x+1)+4x-12=16-4x | | 12+3y=180 | | 16s+36=180 | | 6=21-3s | | (6t+3)=-8 |

Equations solver categories