If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-24x+129=0
We add all the numbers together, and all the variables
x^2-24x+129=0
a = 1; b = -24; c = +129;
Δ = b2-4ac
Δ = -242-4·1·129
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{15}}{2*1}=\frac{24-2\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{15}}{2*1}=\frac{24+2\sqrt{15}}{2} $
| 6(3n-2)=6 | | 15-8x-2=x | | k2-16k=17 | | -3x+9-2=-12-5x | | 90=-15x | | 3m+15=39 | | 4(5n-1)=36 | | F(n)=45•(4/5)^n-1 | | w2+28w+52=0 | | -2(s-6)=2 | | 23/7+1/3=x | | 7(3-x)-2(x+1)=1 | | 2(2n+3)=22 | | 4-2x+3=-3(x-4) | | 16x−4x=-48 | | (3-x)-2(x+1)=1 | | 4x+34=x+7 | | (3x-4)+(8-14)=180 | | –3.3x+6.5=1.55 | | –3.3x6.5=1.55 | | 14=7+2n+5n | | 15x-2+8x=6x-11 | | 3(r-7)+1=4 | | –6.4z+102=2 | | 12d+1=4d+65 | | -x-2=5x+4 | | -7+2x=-6-71 | | 2-(7x-3)=-9 | | 2(n+2)=2n+3 | | x/3-0.5=5/6 | | (10x+2)+88=180 | | c=500-20 |