x2-23x+55=180

Simple and best practice solution for x2-23x+55=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2-23x+55=180 equation:



x2-23x+55=180
We move all terms to the left:
x2-23x+55-(180)=0
We add all the numbers together, and all the variables
x^2-23x-125=0
a = 1; b = -23; c = -125;
Δ = b2-4ac
Δ = -232-4·1·(-125)
Δ = 1029
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1029}=\sqrt{49*21}=\sqrt{49}*\sqrt{21}=7\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-7\sqrt{21}}{2*1}=\frac{23-7\sqrt{21}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+7\sqrt{21}}{2*1}=\frac{23+7\sqrt{21}}{2} $

See similar equations:

| 2f-4.12+f=90 | | 10x-21+10x+1=180 | | -9v+23=5(v-1) | | 1.5-12.6x=8.4-2.5x | | 124=6x+2 | | 8x-4=7x+12 | | 5x-7=0.65 | | 0=a(3-2)(3-4) | | 4=a(3-2)(3-4) | | 65=-5+10x | | x+x/8=180 | | 6x+27+10x-7=180 | | 1/8t+3/5t-3=4 | | 6x+37=9x+19 | | x+1-x=12901298391820398120392390182137091823091802810283018038103810830183 | | 2p-194.97=284.97 | | 4X+2x-10(10)=200 | | (21x-14)/18=0 | | 1/4x+5=1/2x-10 | | -6x-45=(2x-4) | | 8x+17=5x+20 | | (7n-3)+37=90 | | 5x-8+8x+4=180 | | 9^3x+2=27^x-2 | | (e^2-1)/13=0 | | 24x+9=10x+1 | | 5x-8+4x+8=180 | | 7x+22+8+8=180 | | F(-4)=5-2x | | 10x+2=11x-5 | | 9x+3+7x+11+54=180 | | 5+5x=6x-5 |

Equations solver categories