If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-19x=42
We move all terms to the left:
x2-19x-(42)=0
We add all the numbers together, and all the variables
x^2-19x-42=0
a = 1; b = -19; c = -42;
Δ = b2-4ac
Δ = -192-4·1·(-42)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-23}{2*1}=\frac{-4}{2} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+23}{2*1}=\frac{42}{2} =21 $
| 5/12=2x/60 | | 3(c=5)=12 | | 140=4x+6(3x-6) | | x2=2=72 | | 6x-14=7x | | 6.9g+10=2.9g+22 | | 5x=56+8 | | 6+7m=5m-7(-3-m) | | 2x2=2x-9=0 | | k2=13k-12 | | 8x-4x+132=8x+60 | | -6x=-4.8 | | (10x-20)=(-6x+8) | | 4x2-12-40=0 | | X(21)+x(4)=300 | | 3⁴=x | | x^2-26x-432=0 | | y+12=-y+80 | | 9(3+c)=4(3+c( | | 9(3+c)=4(3+c | | x12=72 | | 8c+15=-c2 | | 4(x+1)-3=4x+1= | | x^2+30=25 | | F(x)=3^+2-6x-3 | | 4y+11y+y+20=180 | | 0.02x-0.46=-0.21x | | 2y-5+2y+1+32=180 | | 1.5x^2+540x+1620=0 | | 9x-2x=-21 | | 3x+20=145 | | 2y+1+32+2y–5=180 |